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Abstract—Fluid flows in spherical coordinates have raised the interest of the graphics community in recent years. The majority of
existing works focus on 2D manifold flows on a spherical shell, and there are still many unresolved problems for 3D simulations in
spherical coordinates, such as boundary conditions for arbitrary obstacles and flexible artistic controls. In this paper, we propose a
practical spherical-coordinate simulator for flow motions in 3D domains. Based on a layer-by-layer structure and a boundary-aware
pressure solving scheme, we are able to recover horizontal and vertical flow motions in the presence of arbitrary terrain shapes within
a spherical shell of finite thickness. Our proposed method straightforwardly builds on the conventions of previous 2D-manifold
spherical-coordinate simulations and provides flexible artistic control strategies for art design.

Index Terms—Physically based animation, fluid simulation.

1 INTRODUCTION

Visually charming flow motions appear within finite-
thickness spherical shells. For example, the flows on the
planet and interactions with complex topography make
up various interesting and magnificent meteorological phe-
nomena, which often appear in science fiction movies and
attract much effort towards the simulation of them. In the
meteorological science community, the question of how
the atmosphere evolves on Earth under some determined
initial conditions is well studied. There exists some general
atmospheric circulation models(or climate models) that are
widely used in the area of meteorological science, such as
ECHAM [1], NCAR-CCSM [2], GFS model, etc. Although
the above climate models predict the evolution of the at-
mosphere with high accuracy, the computational costs of
these models are extremely high in addition to their com-
plexity, which is a great challenge to the computer graphics
community. On the other hand, in graphics one may want
in the animation that the thickness of the fluid domain is
to some extent comparable with the ground radius, which
would have a far larger ratio than that of earth atmosphere
thickness with its radius. For such simulations, a practical
physical model of the fluid dynamics system for spherical-
coordinate flow motions in 3D domains is required. Com-
pared with Cartesian-coordinate based ones, simulation in
the spherical domain is better suited for the precise recovery
and control of motions featuring radial-tangential flows, e.g.
precisely controlling laminar flows at constant height over
most of the sphere surface but reproduce vertical motion at
certain places to mimic a meteorological effect.

There have been some good works addressing the sim-
ulation of fluid in the spherical coordinate, most of them
focusing on the two-dimensional surface of a sphere. Hill
and Henderson [3] achieved success in simulating incom-
pressible flow on the surface of a sphere in spherical coordi-
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nate and noted that the geometric terms from the equation
of fluid motion are physically important. They introduced
a spectral filter to enforce the boundary conditions at the
North pole and the South pole to solve the singularities
problem near poles. Yang et al. [4] improved the previous
work [3] by using staggered grid discretization and pro-
posed a more simple treatment at poles. Huang et al. [5]
proposed a novel local advection scheme on the surface of a
sphere to avoid geometric terms. In addition to these grid-
based methods, there are other methods using meshes to
discretize the surface [6] [7] [8]. Ishida et al. [9], Ringler et
al. [10] and Oron et al. [11] considered the thickness of the
spherical structure for thin-film simulation. Despite the suc-
cess of this thin-film model, they only consider the fluid mo-
tion within a thin layer near the spherical surface. Recently,
Cui et al. [12] propose a decomposition-based method for
3D flows in spherical or cylindrical coordinates and achieve
impressive results. However, artificial propelling forces are
applied for arbitrary obstacle boundary conditions in their
works, and may face difficulty integrating with existing
layered models widely adopted for the simulation of clouds
or general circulations (e.g. [13]

In this paper, we propose a novel method to simulate
the 3D flow motions under spherical coordinate. Our model
provides physically-based calculation of fluid flows within
3D spherical coordinates ¢, 0, r, with ¢ € (0,27), § € (0, )
and r € (Ymin, 'maz ), Where the arbitrary boundaries from
landscape shapes are handled physically with a geometry-
aware projection solver , which integrates spherical harmon-
ics expansion with a volume ratio scheme to solve the Pois-
son equations. To resolve the low computational efficiency
of a full 3D spherical harmonics expansion solver and to
provide more control convenience of the radial-tangential
flow motions within the spherical coordinates, we further
decompose the spherical shell domain into a layer-by-layer
structure. The layers are discretized by a staggered grid of
the same size in radian (described in Fig.1 and section 3.2)
with unified distance between each other. A rough 3D solver
is first applied in the 3D domain and then followed by a 2D



precise solver of the 2D-Poisson equations on the layers,
which is integration-friendly with existing methods on 2D
spherical-coordinate simulations. Our method is able to
capture fluid phenomena featuring flow-ground interaction
with arbitrary terrain shapes and combined horizontal and
vertical motion of swirling flows under the spherical coor-
dinate. In summary, the main contributions of our paper are
as follows:

o A 3D spherical-coordinate solver for incompressible
inviscid fluid flow on planetary in computer graph-
ics with physical handling of arbitrary landscape
boundary conditions.

e A layered-structure algorithm that is able to effi-
ciently perform graphical 3D spherical incompress-
ible inviscid fluid flow simulations.

e A flexible method allowing intuitive artistic controls
on the planetary flow.

2 RELATED WORKS

Fluid simulations in Cartesian coordinates have been thor-
oughly studied in computer graphics, such as using Eule-
rian grid [14], Lagrangian particles [15] [16], or hybrid meth-
ods [17] [18]. However, flows within spherical manifolds,
such as atmospheric flows or flows on bubble surfaces,
that evolves on spherical geometry receives relatively less
attention. Yaeger et al. [19] first achieved planetary atmo-
spheric flows on the surface of a sphere using a grid-based
discretization method. Hill and Henderson [3] proposed an
algorithm framework to avoid the singularity problems at
poles using grids constructed in spherical coordinates. Later,
Yang et al. [4] improved its results by using a staggered
grid and a Fourier-transform-based Poisson equation solver.
In [5], a novel local advection step was further proposed
for reducing artifacts appearing near the pole for flows
on spherical surfaces. These works consider the fluid to
be on an infinitely thin spherical shell, which is a 2D
manifold in 3D space. Recently, Cui et al. [12] successfully
simulated incompressible fluid in three-dimensional spher-
ical/cylindrical geometries. Following [20] and [21], they
established principal basis functions and enrich functions
which support FFT-based reconstruction over the radial
domain to simulate divergence-free fluid flows in spheres,
spheroids, and cylinders. They achieved great success in
simulating fluid flow in three-dimensional spherical ge-
ometry using spherical coordinate, but the method lacked
flexible control over flow motion and only used a sim-
ple propelling-force-based strategy for arbitrary obstacle
boundaries in the simulation domain. In our work, we take
into consideration of the effect of arbitrary terrain shapes
in the three-dimensional space within pressure solvers. The
proposed method is a 3D spherical-space fluid simulator
with straightforward implementation and control flexibility.

In meteorological science, the three-dimensional atmo-
spheric motion is conventionally separated into two parts
consisting of horizontal motions and vertical motions. For
the horizontal motion, spectral methods [22] which use a
number of orthogonal basis functions are commonly used
to solve the partial differential equations, as is described in
section 2.3 of [1]. Silberman et al. [23] investigated to use
spherical harmonics functions for representing the stream
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functions and demonstrated a procedure to solve it. Baer et
al. [24] and Ellsaeser et al. [25] utilized a similar procedure as
in [23] to solve the vorticity equation. Robert et al. [26] pro-
posed a semi-implicit time integration algorithm for spectral
method solvers. Bourke et al. [27] and Hoskins et al. [28]
proposed the multi-layer primitive equations represented
by spherical harmonics, which were applied in the general
circulation model [1]. They use structured grids to discretize
the spherical space. Layer-based model is widely accepted
in meteorological science. There are several vertical coor-
dinate systems to discretize the vertical direction. Height
which discretizes vertical direction based on height is the
most intuitive way in meteorological science, however, less
useful in simplifying the computation of vertical equations.
Phillips et al. [29] proposed a o-coordinate which o is
calculated by pressure. Suarez et al. [30] modified the o-
coordinate on the basis of [29]. Hsu et al. [31] proposed
to use 0-coordinate which is based on isentropic vertical
coordinate. In the computer graphics community, height
coordinate for vertical dimension is more intuitive and
suitable for visual effects.

On the other hand, triangle meshes are also used to
simulate surface flow on spherical geometry in compute
graphics. Ringler [10] used uniform triangle meshes to fully
fill the sphere, which was able to avoid the singularity prob-
lem occurring at the North pole and the South pole. Elcott
[7] used discrete exterior calculus(is known as DEC, see
[32]) to solve vortex equations on a two-dimensional surface
and recovered fluid flows on the sphere, which avoided the
singularity problem at poles. Azencot [6] [33] also proposed
meshes-based methods using functional map for triangular
discretized surfaces. All of these works are on surface flow
lacking considerations of vertical motions. For thin-film
structures that have significantly small vertical scale than
horizontal scale, Ishida et al. [9] introduced models for soap
films, Ringler et al. [10] for airflow on the earth, and Oron et
al. [11] for thin-film equation. The main difference between
us and the above work is that we consider the thickness size
that is comparable to the horizontal scale.

3 METHODOLOGY

In this section, we first briefly recap the Navier-Stokes equa-
tions in 3-dimensional spherical coordinate in section 3.1.
Then we describe our spatial discretization scheme using
a layer-based structure in section 3.2. Finally, a geometry-
aware projection step is derived from the proposed dis-
cretization in section 3.4.

3.1 Equations in 3D Spherical Coordinate

The N-S equations for incompressible fluids in the Cartesian
coordinate are below, bold letters denote vectors and no
bold capital letters denote scalars:

ou

1
E—i—(u-V)u:—;VP—&-f, )

V-u=0, ()
where u is fluid velocity in Cartesian coordinate

u(ug, Uy, uz), p is fluid density, P is pressure and f is body
force. According to Appendix 2 in [34], some operators
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Fig. 1: An illustration of our layer-by-layer staggered grid.

in the spherical coordinate are listed below. The material
derivative is
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The component-wise equations for the momentum equation
can be written as follows:
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The elements (ug? + uy?)/r, (uguy)/r, (uy’coth)/r,

(ugu,)/r and (ugugcott)/r are so-called geometric terms
representing the rate of change of coordinate basis. These
terms have been studied in previous graphics research with
handy calculations on 2D spherical surfaces (see [3], [5]).
The formulation of gradient in spherical coordinate of a
physical quantity Q can be written as:
8Q_, 1 8Q 1 0Q -

Vs@Q = -+ *% , s1n987¢¢’ )

and the divergence of a vector u can be written as:

0 — (sinfu) + !
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The subscript S indicates that the operator is in the spherical
coordinate.

1 2
Vs-u= 725(70 u)+

®)

3.2 Layered discretization

In our approach, we discretize the three-dimensional sim-
ulation domain into a layer-by-layer structure. We choose
such a discretization for several reasons. First, it follows the
intuition shown by the meteorological science that the plan-
etary general circulation is characterized by the altitudes,
and directly extends previous advances in 2D-spherical-
coordinate studies, making use of the existing implementa-
tion framework. Second, a layered discretization will bring
convenience to the 3D advection and projection calculation
described in section 3.3 and section 3.4. Third, using the
proposed discretization scheme, one can conveniently and
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precisely control radial-tangential flow motions at given
heights using our layered structure.

In Fig. 1, we show our discretization scheme. We assume
the atmosphere starts from a minimum radial value 7,
and ends at a maximum radial value 7,,,,, forming a finite-
thickness shell that is the simulation domain. Spherical
“horizontal layer”s are placed with equal distance Ah, rad-
ically dividing the domain into multiple layers. We denote
Ny as the number of discrete grids in the 6 direction and
Ny as the number of discrete grids in the ¢ direction within
each layer, and denote IN;, as the number of layers. Then
letting N, = 2 x Ny achieves A = A¢ = (7 /Np) in radian.

In the 3D layered structure, we separate the vector fields
into horizontal and radial components. For example, we
separate the 3d velocity into a horizontal velocity u;, within
each horizontal layer consisting of u, along ¢ direction and
uy along 0 direction, and a vertical velocity u, along the r
direction. We stored the velocity in a staggered grid form.
uy, is at the middle of two layers, located in staggered grid
form in ¢ — 6 direction, u, is at the center of the grid in
each layer, this spherical MAC grid is illustrated in Fig. 1.
We summarized the location of each velocity component as
follows:

Location(uy,;,) = ((i +0.5)A¢, (j+0.5)A0, kAr),

Location(ug, ;) = (1A¢, (j+0.5)A0, (k+0.5)Ar),

Location(uei’jyk) = ((i +0.5)A¢, jAO, (k+0.5)Ar).
)

3.3 Advection Calculation

Using the layered grid described above, we can separate
the velocity advection step into two parts: a horizontal
velocity advection and a vertical velocity advection. First,
the horizontal velocity advection is performed within each
¢ — 6 layer. Inspired by the geodesic method of [5] and
the method of [3], we proposed a novel advection scheme
for our 3D layer-based discretization. We first perform a
first-order semi-Lagrangian backward tracking along the
great circle using ug, ug similar to Huang et.al [5] within
a layer, finding the horizontal position. More advection
schemes such as RK2 or RK3 advection can be applied for
higher order accuracy, which has been proven in [5]. Next,
a first-order semi-Lagrangian-like advection is applied in
the vertical direction, a radial shift distance Ar = u,At
is calculated according to local vertical velocity u,. This
shift distance is then added to the above horizontal position
forming a 3D position p*, and a linear interpolated value
u® = (uy, uj, u}) can be obtained at p*. The above proce-
dure is demonstrated in Fig. 2.

As discussed by Hill and Henderson [3], there are
external geometric terms that need to be calculated. In
the 2D situation, the advection scheme of Huang et.al [5]
ensures cot 6§ is zero and therefore term (u?)cot 6/r and
term (uguy cot 6)/r can be ignored. Then, we use a similar
method to [3] to solve the remaining geometric term. For
calculation convenience, we ignore the term (uy? + ug?)/r
for u, calculation. This will bring much simpler calculations
for the remaining two terms. Such a trade-off between calcu-
lation error and simplicity is acceptable because the radius
scale is much bigger than the velocity scale in practice.
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Fig. 2: Advection scheme.

Moreover, solving this nonlinear problem requires iterative
methods such as Newton’s method which is time consum-
ing, and there will be interpolation problems, because we
stored the three components in different locations. In our
experiments, it doesn’t bring additional artifacts. Therefore
the remaining two terms can be solved through the follow-
ing equations:

wowp_wpeowpowwpwo o
At ro’ At ro
The final velocity components given by the advection
step are as follows, and G = %:
u; u;
= ut ust = e utt = 7¢ 11
r o T 1 Guy Y 1-Gug (an

3.4 Projection Calculation

In the three-dimensional spherical coordinate, the projection
equations for the velocity components are as follows:

_At

urtt = u 7VSP T, (12)
At "
wtt =uyr - —VsP-0, (13)
pr
At -
n+1 — gt P . 14
Yo e pr sin@vs ¢, (14)

where P is pressure which is the solution of a Poisson
equation 15 using spherical gradient and divergence, u™*
is velocity after advection step:

2p— L gg. u
VS Atvg u

(15)

Solving a three-dimensional Poisson equation in a sphere
is a difficult problem and often needs spectral methods [22],
to avoid the singularity problem which occurs at two poles
(@ =0, 8 = m) and the center (r = 0). Recently, a direct
Poisson solver in spherical coordinate has been proposed
in the field of computational physics [35], which provides
a theoretical foundation for our problem. However, their
method relies on a spherical harmonics expansion and faces
the dilemma of having high computational cost using more
base functions or having high calculation errors for horizon-
tal components using fewer base functions. Moreover, Lin’s
work [35] does not consider terrain-like boundary condi-
tions but only considers the topmost and bottom boundary
conditions.

Inspired by their method, we propose a layer-based
solution for the projection calculation that has moderate
calculation cost, is visually plausible, and is able to cope
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with arbitrary terrain boundary shapes. To feasibly develop
an efficient algorithm framework, we split the projection
step into two steps, the first step is a coarse 3D projection
which will be discussed in section 3.4.2, the second is a
2D projection step which will be discussed in section 3.4.3.
Before introducing those projection steps, we will first intro-
duce an enhancement to the spherical harmonics expansion
where we use a volume ratio not occupied by terrain to
enable geometry-aware incompressible solve in spherical-
coordinate domains in section 3.4.1.

Estimate

Fig. 3: We calculate the volume ratio not occupied by
the terrain in the element composed of eight surrounding
points, which are marked with eight stars in the figure. We
approximate this space as a cuboid, as shown on the right
side of the figure, blue volume denotes the space that is not
occupied by terrain. We will estimate the volume ratio of
fluid in this cuboid, as will be discussed in section 3.4.1

3.4.1 Boundary representation

In the beginning, we import the terrain as triangle meshes.
To represent the boundary of the imported terrain in our
simulator, we estimate the volume ratio not occupied by
the terrain in the surrounding space of each velocity com-
ponent, uy, ug, ug. As we showed in Fig.3, velocity u; ; , is
stored at the middle layer between layer k and layer k+1 in
a staggered grid form, as described in section 3.2, thus the
surrounding space of this velocity component is composed
of eight point which are marked with star in Fig.3 in our
3D simulator. The volume ratio not occupied by the terrain
in this surrounding space can be estimated by the signed
distance field(hereinafter referred to as SDF) relative to the
terrain mesh, we will describe the detailed implementation
in section 4.2.

Since we assume that the shape does not change and
does not move, this step only needs to be calculated in the
initialize step. By utilizing the volume ratio to represent
terrain, our proposed method could handle a variety of
complex shapes, in the next section we discuss how this
boundary representation allows our simulator to handle
complex terrain in spherical coordinate.

3.4.2 Boundary-aware 3D projection

On the basis of a direct Poisson solver proposed by Lin et al
[35], we improved it to handle the shape of the terrain. As
the first step, we apply our novel 3D Poisson solver to u**.



In the spherical coordinate, the formulation of the Poisson

m. . m .
equation is as follows in Eqn.(16). The singularities occur ol s l+|1’j+0'5
at the north pole(d = 0) and the south pole(d = 7). In our S ’
simulator, the range of r is 7 € [Fmin, Tmaz) and Tmin > 0, Vm
therefore no singularity problem at r = 0.
P ) 19, 0P 1 9P Pij o oPisy
s ;55;W 5;)+Q3§n95§@m 55)+73sm?98¢2 Mi—o5,j Mit0.5,) Mit15,j
=F
(16) : :
M j-o0s Mit+1,j-05

To satisfy the incompressible condition Eqn. (2), the right
hand side of Eqn. (16) is the divergence of velocity after
advection u** in the spherical coordinate form. To reduce
the artifacts due to irregular boundary geometry, there are
several solutions in computer graphics. Batty [36] treated
the fluid-solid coupling problem in a variational framework,
which translate the coupling problem to a minimization
problem. They utilized the volume of fluid of each velocity
component to adjust the Poisson equation to achieve a fine
visual effect near the irregular solid boundary. Ng et.al.
[37] improved the boundary treatment of Batty et.al. [36]
to get a second-order accuracy near the solid boundaries.
Inspired by Batty’s work [36], we develop a boundary-aware
projection scheme for spherical coordinate simulation.

We take a similar approach to handle fluid-solid cou-
pling. We start from the fluid-solid coupled projection equa-
tion in [36] as is shown in Eqn.(17), D is the gradient finite
difference operator, M is the contained volume ratio not
occupied by the terrain of each velocity component.

D"MDP = L DT Mpu. (17)
At
In spherical coordinates, using the precomputed volume
ratio, we rewrite Eqn.(17) into the following form, where
my, Mg, Mg € m is the volume ratio not occupied by terrain
of each velocity component as described in section 3.4.1:

g(m TQa—P)—i- ! g(m sin@a—P)—i—il 2(m a—P)
or- " or’ T singog ! 90’ " sin200¢° © ¢
d, ,0P  my & P myg &P

Mo o) aneae 090 T anze 92
+12Vem - VgP
= r2§tv5 - (mu™). (18)

According to m, we divide the terrain geometry into
three parts: (1) solid part where m = 0. (2) fluid part where
m = 1. (3) fluid-solid boundary part where m € (0,1). In
fluid and solid part, m is a constant value (0 or 1), therefore
Vgm equals zero, which means the term Vgm - VgP in
Eqn.(18) can be ignored. In the fluid-solid boundary part,
which is a narrow-band width area at the surface of the
terrain, the gradient of Vgm doesn’t equal to zero. Fig.4
illustrates the gradient of m in the fluid-solid boundary
part. It is intuitive that the non-zero gradient of m appears
at the surface of the terrain, pointing from a smaller m to
a bigger m in the normal direction of the terrain’s surface.
Using the free-slip boundary condition, the velocity near the
boundary should be zero in the normal direction of terrain
and should be along the surface of the terrain, therefore we

Fig. 4: Illustration of the gradient of m in simple 2D case.

have Vgm - u™*! = 0 on the surface of terrain. Notice that
(unt! — u**) /At = —V P/p, therefore we could derive the
following formulation:

Vgm - VsP = —évsm- (u™+! — u)
= —&(Vsm utt —Vem - u™)  (19)
= AitVsm . u**

We substitute Eqn.(19) into Eqn.(18) and rewrite it as
follows:

my 0 28P me 0 . oP me 82P
M O 297 9 (sing LN
2o o) T meme e 080 T aenr e 007
m*ﬁ( 28£)+ m* g( ingaj)+ m* 9P _
2 or" or 2smh o0 99 r2sin? 0 092

m*ViP = Aﬁtvs - (mu**) — Aitvsm -u*r.
(20)

We estimate the value m* by means of its surrounding
volume ratio not occupied by terrain, in 3D case m* =
(M1 + My, + mg1 + mga + mg1 + me2)/6. Dividing both
sides of Eqn.(20) by m* yields a regular Poisson equation
and can be solved numerically in our discretization.

We follow the idea of Lin [35] to solved the Poisson equa-
tion. We can expand the solution of Eqn. (16) by spherical
harmonics expansion [38] as follows:

Z( Z (P (€08 0)) (Pran (1) coSMP + P (1) sSinme)),
n=0 m=0

21)

where P! is the associated Legendre polynomial of order m
and degree n, py,,, (1) and Pp,y, () are the real and imaginary
parts of the coefficients of P (r), N is the highest order of
P’ in spherical harmonics expansion.

We denote the right hand side of Eqn.(20) as F(r, ¢,0), it
has a similar spherical harmonics expansion with fy,., fimn



as its coefficients, which is given by:

2m
Jmn(r M/ / (r, ¢,0) P (cos 0) cos me sin dOde,

2
fon () = M / / (r,¢,0) P (cos 8) sin me sin 6dfde,

(2n+1)(n —m)!
2(n+m)!N(m)’

where N(0) = 27 and N(m) = 7 for m # 0. As the spherical
harmonics functions are eigenfunctions of Laplacian opera-
tor in spherical coordinate, i.e., V4 P? = —n(n+1)P", sub-
stitute Eqn.(21) into Eqn.(16), the formulation will reduced
to a one dimension ordinary ODE equation, written in finite
differential form as below:

7"1'2 05 i—1

Ti+0.5)
Ar?
where p!, . is the coefficient of P in layer i, 7; = Tyin +
(1 +0.5)Ar, i = 0,--- , N, — 1. Eqn. (23) is a tridiagonal
linear system with size Ny, x N, which can be conveniently
solved in serial or parallel computing as described in [39].
After getting all of the coefficients py,y, and P, P(r, ¢,0)
is reconstructed by Eqn. (21). In order to perform efficiently,
we pre-compute the entries of this tridiagonal matrix before
starting the simulation, as described in section 4.

ok and pN- are the ghost value. There are Neumann
boundary conditions at the topmost and bottom layers for
the ghost values in order that fluid wouldn’t pass through
the ground and is contained near the surface: u"+1 =0
and u't! = 0. Substituting these boundary conditlons to
Eqn. (12) we get:

P(¢,9,0> - P<¢79a _1) P
Ar At " (,6,0)

P(QS,@,N,.) _P((baaan'—l) _ '
Ar At v (6,0, Nr).

M =

(22)

2 2
Tito.s T 7"1‘0‘5) i

2 mn
Ar (23)

+1 .2 pri
Pmn = Ti Jmns

+

(24)

As discussed in [35], the above Neumann boundary

conditions is equivalent to (0%, — pmk)/Ar = 4l and
(e — pNe=1)/Ar = ullr  where ul,, and ulr are the

coefficient of associated Legendre polynomials in spherical
harmonics expansion of £;u;* at bottom and topmost layer.

We observe that in our layered grid structure, each layer
can possibly exchange volume with other space through its
two layer-layer boundaries above/below it. From incom-
pressibility we know the total flux between each layer is
zero. On the other hand, the layer at 7,,,,, exchanges volume
only through the upper boundary, so one can conclude that
the total flux across every layer-layer boundary should be
zero to satisfy the incompressible condition. Thus, we first
extract the radial component of velocities solved from the
3D solver as described in section 3.4.2, which corresponds
to the 3D projection step in Algorithm 1. Although such a
direct result has an error (will be explained in section 3.6), it
serves as a good estimation of the radial velocity. Then a re-
balance step is introduced to ensure their flux sum exactly
equals to zero. We will describe the detailed re-balance step
in section 3.5.

3.4.3 Boundary-aware 2D projection

In practice, the above solver requires a large number of
spherical harmonics base functions making it inefficient for
graphics applications , on which we will provide a further
discussion in section 3.6. In our experiments, using a small
number of base functions generates divergence especially
near the polar areas, resulting in obvious visual artifacts. As
a result, the outcome of the above solver can not be used
directly with moderate computational cost. For computa-
tional efficiency, we in turn move on to another 2d solver
step described as follows.
We rewrite the divergence-free form of Eqn. (8):

1 0 1 811¢ 10
o —(sinf ug) + —2 = —— —(r’u,).

r sinf O¢ r2 Or

We denote V), as the differential operator within the
horizontal layer. Eqn.(25) shows how the vertical velocity
influences the horizontal velocity under the incompressible
condition. Therefore the 2D projection equation coupled
with the 3D projection equation as described in section 3.4.2
becomes:

(25)

0

VHP = Vi w4 e (),

where i, is the vertical velocity after the re-balancing step,

which will be discussed in section 3.5. .We adjust the right

hand side of Eqn.(26) to improve the 2D projection step

in the same way as in the 3D projection step. Therefore

Eqn.(26) will become as follows, where m}; = (mg1 +mg2+

Mmg1 + Me2)/4 is the mean of surrounding volume ratio not
occupied by terrain:

uy” + (26)

my VP =

p (O(mgsinfu)  d(mgu) o(r’*m, ) B

At ( rsin 600 7 sin 00¢ r20r Vamu
27)

Then, a 2D Poisson solver is performed within each
layer, and we update the horizontal velocity by Eqn. (14)
and Eqn. (13) with solved pressure, which is the solutions
of Eqn.(26).

We use the Fast Fourier Transform(FFT) based method
[40] to solve the above Poisson equation as the same as [4].
Since each layer computes this step individually, Eqn. (26)
should be solved N;, — 1 times, the same as the number of
layers.

It is to be noted that, although in practice we only use
the vertical component of velocities solved from the 3D
Poisson solver, we can not discard the 3D projection step.
This is because individual 2d projection solvers will never
know when and where there should be a vertical circumflux
without the calculation of the 3d projection solver.

3.5 Re-balancing Vertical motions

As mentioned above, the total flux between layers should
be zero, which is not automatically assured by the 3D
projection due to its numerical errors using a limited num-
ber of base functions. So we introduce a re-balancing step
for vertical velocity to ensure incompressibility within the
fluid layers by enforcing the inter-layer zero-flux boundary
condition.
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Fig. 5: Illustration of spherical harmonics expansion to two
different input map with different sample times per grid,
the darker the pixel color, the smaller the relative error.

We first compute the flux of each layer. Notice that the
grid cell area is uneven, which is determined by ¢, §, and
radius. We use the following equation to compute the grid
cell area first:

sijk = (R+KkAr)*(sinf; —sinf;_1)Ag. (28)

For each layer, we compute the fluxes by summing up the
product of vertical velocity and corresponding grid cell area.
Finally, we adjust the speed of different grids to make sure
the flux of this layer is zero. For example, if the flux of
Layer k is Fy, we adjust a specific velocity velocity w,, ;
at grid(i,j k):

k

after __ _ before @ (29)

Tijk Tij.k Sk ’
where S}, is Layer k’s surface area which is calculated using
the formula S = 47mr?.

3.6 The orders of spherical harmonics expansion

As we mentioned in section 3.4.2, spherical harmonics ex-
pansion is utilized to numerically solve the Poisson equation
in 3D spherical coordinate. To get a more accurate solution
requires higher order of Legendre polynomials in spherical
harmonics expansion, as shown in Eqn.(21). However, for
higher order spherical harmonic expansion, due to the lack
of fast algorithms like FFT for Fourier transform, it is very
time consuming. We will demonstrate in this section that the
Spherical harmonic expansion scheme alone does not pro-
vide a good balance between efficiency and precision. In this
section, we will discuss how many Legendre polynomials
for operating more accurate spherical harmonics expansion
in our proposed 3D projection step are needed.

We discretize each staggered grid layer with N, grids
in ¢ direction and Ny grids in ¢ direction, Ny = 2 X Nj.
As the highest order of associated Legendre polynomials
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from a discretized N4 x Ny input in spherical harmonics
expansion l,q, is up to Ny — 1, in order to expand with
higher order coefficients, we need to upsample the original
Ng x Ny input to a larger size, for example, 2Ny x 2Np,
then the highest order of associated Legendre polynomials
will become 2Ny — 1. We divide each grid of the original
input into multiple sub-grids. We denote A as the number
of subdivision, which means we get VAN, x VAN, grids
after upsampling, and l,,,4, becomes VAN, — 1. After in-
verse spherical harmonics expansion, we should reduce the
upsampling size to the original size, which can be done by
averaging the corresponding A grids values and put it on
each grid of the original Ny x Ny size.

For error analysis, we use a 128 x 256 grayscale lattice
map as input, the grayscale of each pixel corresponds to the
data value on the grid at the same location. We use different
A to expand the same input and then inverse transform to
an original size output, as shown in Fig.5. The upper left
corner of Fig.5 is the grayscale lattice map input, and the
rest of the figures are the output with different A, the more
similar it is to the input, the stronger its expressive ability. As
we can see, with A increases(the more associated Legendre
polynomials are used), the recovered output is closer to the
original input. As the A value increases, the errors of the
spherical harmonics expansion is reduced from the equator
region to the pole region. However, even with A = 162,
which is already of high computational cost, the errors are
still not negligible.

Table.1 lists the running time of different A cases. It
can be seen that the time required for computation is not
linearly related to l,,4,. We then set A = 42 in our combined
3D-2D projection setup, which has a fast and relatively
good estimation from the 3D solver and achieves a precise
divergence-free field through the 2D solver.

4 |IMPLEMENTATION

Our overall algorithm framework is shown in Algorithm 1.
We first determine parameters including Ny, Ng, N, etc. In
each timestep, we first perform the advection step which is
described in section 3.3. After the advection step, we apply
external force to the velocity by the following equation:
u" =u" + AtF, (30)
where u* is the output of the advection step, F is the
acceleration caused by force term. Afterwards, we execute
the projection steps to achieve divergence-free conditions.
We first execute 3D projection using spherical harmonics
expansion as described in the section 3.4.2. Then a Re-
balance step is applied to ensure each layer’s inlet flux
is in equilibrium with outlet flux. After a Re-balancing
step, we execute 2D projection. In the implementation, we
calculate the required spherical harmonics on the CPU side
in the preprocessing stage, each step in the main loop of
simulation can be implemented in high parallelism on the
GPU side.
In the following subsections, we describe some imple-
mentation details for our multi-layer simulator.



grid size | samples/grid | lmaz | expand time(ms) | integral times(ms)
Fig.5.(a) | 128 x 256 1 127 <1
Fig.5.(b) | 128 x 256 4 255 6 3
Fig.5.(c) | 128 x 256 16 511 25 20
Fig.5.(d) | 128 x 256 64 1023 139 154
Fig.5.(e) | 128 x 256 256 2047 869 775

TABLE 1: Comparison of time consumption of spherical harmonic expansion at different grid size and sample count

Algorithm 1 Overall algorithm famework

Parameters:
discretized number along ¢ direction, Ny;
discretized number along 6 direction, Ny;
number of layers, Np,;
radius, R;
timestep, At;
gap size between each layers, Ar;
sample times per grid A
Initialize:
velocities ug, ug, u?;
Mg, Mg, M, represent terrain, compute from the input
mesh;
Preparing associate Legendre Polynomials
Calculating entries of tridiagonal matrix
t<0
Fort < T do:
Advection Scheme(ufi), ub, ut, At)
swap velocity buffers
Add external force
swap velocity buffers
3D projection step(ug®, uf?, ul)
Re-balance step
swap velocity buffers
2D projection step(ug’, u0?)
swap velocities buffers
t—t+ At
End For

4.1

Eqn.(23) is a tridiagonal linear system in the 3D projection
step. Since the entries are consistent in every timestep, we
pre-compute the entries before simulation. The format of the
tridiagonal matrix is as follows:

Compute entries of tridiagonal matrix

b() Co 0 tee 0 0
aq bl C1 0 0
0 a9 b2 tee 0 0
0O 0 O an,—1 by, 1

According to Eqn.(23), the value of a;, b; and ¢; are:

2 2 2
Ti—0.5 Tito.5 T Ti—0.5
= b = — 05 T Tiz05 |
az AT’Q b 7 A,,,.Q + n(n + )7 (31)
2
_ Titos
AP

There are boundary conditions Eqn.(24) at the bottom
and topmost layer, therefore we adjust the value of ag, bo,
by,—1 and cy,—1 as ag = 0, by = (=73 5/Ar?) + n(n + 1),
bn,—1 = (—TIQVT_O_s/Arz) +nn+1),en,-1=0:

</
.
(b) (c‘

Fig. 6: The volume ratio not occupied by the terrain of
each element could be estimated by decomposing it into
five tetrahedrons and weighted-averaging their ratio. The
volume ratio in a tetrahedron can be calculated via four
SDFs of its vertices.

i
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4.2 Estimate volume ratio not occupied by the terrain
of each velocity component

As illustrated in Fig.6, the surrounding space of each ve-
locity component can be roughly decomposed into five
tetrahedron:Tet aspcr, Tetcera, Tetapca, Tetagur and
Tet spca. We estimate the volume ratio of these five tetra-
hedrons. As these five tetrahedrons are not the same vol-
ume, therefore we perform a weighted average for these
five tetrahedrons based on the volume ratio to obtain the
corresponding volume ratio not occupied by the terrain
of each velocity component. This can be done in the pre-
computing step. To estimate the volume ratio not occupied
by the terrain of a tetrahedron, we simply utilize its four
points’ signed distance value relative to the terrain mesh, if
a signed distance is negative, it indicates the point is inside
the mesh, else if it’s positive, the point is outside the mesh,
if it’s zero, it is on the mesh. We will briefly describe the
calculation.

First we denote S, Sp, S¢, Sq as the signed distance of
each four vertices, and they satisfy the relationship S, >
Sy > S, > S;. There will be three situations, as shown in
Fig.6:

Se > 0> Sg0r S, >0 > S, which corresponds
to case (a) in Fig.6, the purple plane approximately
expresses the surface of terrain and divides a tetra-
hedron into two parts;

e Sy > 0> S., which is corresponding to case (b) in
Fig.6;



Fig. 7: Fluid flows on customized terrain. Upper row: a small number of big mountains; Bottom row: a large number of
small mountains where the terrain shape is more complicated and fractured. Our method successfully recovers the 3D

fluid motion in the existence of obstacles.

e Sg>0o0rS, <0, which is corresponding to case (c)
in Fig.6, the tetrahedron is fully solid or fully fluid.

In case (a), we assume S, > 0 > S, the volume ratio
can be computed as follows:

m=1-— aadeaceab' (32)

In case (b), the volume ratio can be computed as follows:

m = edbgda + ecbeca + adbeca - adbedaeca - ecbecaadb- (33)

where 0, = 5,/(S; — Sy), and x,y € {ab,c,d}. The above
algorithm can be easily implemented in parallel.

4.3 The thickness of the spherical shell

In theory, our method has no limit on the maximum thick-
ness. Since we fixed the discretization number of each layer,
the element size on the outermost layer will be relatively
larger as the radius increases, and the accuracy of the vol-
ume fraction which represents the geometry on a layer will
decrease. Therefore, we recommended that the maximum
thickness be within 50% of the radius in practice.

In addition, the gap between layers in the vertical di-
rection should be comparable to the scale of the discrete
grid in the ¢ — 0 horizontal direction, since we focus on
the situation that the motion in the vertical direction is
comparable to that in the ¢ — 0 direction. When our method
degrades to only one layer, it’s consistent with the previous
2D surface method [3] [4] [5] and can also be used for thin-
film simulations.

5 EXPERIMENT RESULTS

In this section, we perform several experiments to demon-
strate the effectiveness of our proposed method in sim-
ulating fluid flows in a three-dimensional spherical shell
domain.

We implement our proposed method on an NVIDIA
graphic card GeForce GTX 1080Ti with CPU Intel Core i7-
4790K and 32GB RAM. All of our experiments are simulated
over a spherical shell domain with a minimum radius of
10.0 length unit. We choose a fixed timestep of 0.002s in all
our experiments. All of the submitted animations are 24 fps
and each frame contains 21 timesteps of calculations. All
of the experiment results are attached in video format in
supplemental materials.

5.1 Flow over rough terrain

In this scenario we create a planet with rough terrain and
spread a moderately thick layer of red-white striped cloud
over it. The upper row of Fig.7 is a simpler input terrain. In
the initial step, we blow the cloud in one direction and it will
flow through the terrain on the planet. With the projection
step, we propose the fluid motion is geometric-aware. When
the fluid passes the uneven hill, it flows around its periphery
in the horizontal direction and will climb up the slope in the
vertical direction. We also create another planet with more
complex terrain as input, as illustrated in the bottom row
of Fig.7. Our proposed boundary representation can handle
such complex obstacles mesh as input. We use curl-noise
[41] to initialize a divergence-free velocity. The experiment
produces a visually plausible effect.

5.2 Release from a dam

In this scenario, we place a dam-like structure at the cir-
cumpolar pole with several exits underneath. Gas is stored
in the structure and released through outlets at the bottom,
where it interacts with external obstacles, as illustrated in
Fig.8. Thanks to our proposed boundary treatment, the gas
shows correct behaviors alongside various terrain shapes.

5.3 Flow over complex geometries



Fig. 8: Smoke released from a dam. We build up a dam-
like structure at the circumpolar pole. Gas stored at this
structure then releases at the bottom and interacts with
exterior obstacles.

Grid size | Np A dt(s) Ar | s/step

Less Mountain 128 x 256 | 40 16 | 0.002 | 0.10 1.604
More Mountain 128 x 256 | 40 | 16 | 0.002 | 0.05 1.426
Dam 128 x 256 | 40 | 16 | 0.002 | 0.10 1.873
Armadillo 128 x 256 | 40 | 16 | 0.002 | 0.10 1.625
Little cow 128 x 256 | 40 | 16 | 0.002 | 0.10 1.654
Control 64 x 128 40 | 16 | 0.002 | 0.10 | 0.637
Goddess 128 x 256 | 40 | 16 | 0.002 | 0.10 1.508
Compare(2D+3D) | 128 x 256 | 20 | 16 | 0.002 | 0.10 1.096
Compare(3D) 128 x 256 | 20 | 64 | 0.002 | 0.10 | 5.993

TABLE 2: Information of each examples.

In Fig.10 and Fig.12, we demonstrate our method’s ability
to handle shapes significantly different from a sphere. The
virtual bottom boundary of the simulation domain is shown
in Fig.9. Over the armadillo, we place a smoke source at its
left hand and initialize a wind blowing from its left hand
to its right hand. Vigorous swirls can be observed when the
flow encounters the armadillo’s head and ears.

In Fig.12 we set the simulation domain around the neck
of a little cow. We initialize with a curl noise velocity field
superimposed with a velocity along the equator to make the
cloud flows around the tiny cow. The result shows rich 3D
vortices in this experiment. The above experiment results
further validate that our proposed method can handle 3D
motions over complex geometry.

Noting that for this type of non-spherical geometry, it
is more common to simulate in the Cartesian coordinate
system. In this case, we use the Houdini Pyro solver based
on [14] to simulate fluid flow in the same scenario of
Fig. 10, as shown in Fig. 11. In both coordinates the viscosity
coefficient is set to zero, and the gravity force is pointing to
the origin. Our method produces more smooth fluid motion
and vigorous vortices.

5.4 Controlling
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Fig. 9: The virtual bottom boundary of the armadillo case
and little cow case.

Our layer-based method can help artists easily control the
motion of fluid in the spherical shell space, and the scenario
of Fig.13 is an example to validate it. Using our spherical
coordinate algorithm, it will be convenient to make the fluid
flow exactly at a given height, rise and descend along a
given radius, etc., which is hard for Cartesian coordinate
simulator to accomplish.

We can use external forces to control the fluid. After
solving for the advection term, users could customize a
time-dependent external force f(¢,0,r,t) and use forward
Euler integration to modify the flows, which is convenient
for artistic control. In Fig. 13, we placed customized force
in vertical and horizontally at appropriate time to alter the
flows to form an interlocking ring structure.

5.5 Compared with high-precision 3D projection solver

To verify the correctness of our proposed 3D-2D solver, in
this example, we compare our proposed 3D-2D projection
scheme to a pure 3D projection solver from [35]. For the
reference pure 3D projection solver, we use a sample count
of 8% per grid for spherical harmonics expansion. Such a
high order of spherical harmonics expansion will inevitably
lead to extremely long calculation times. In contrast, the
sample count per grid is set to be 42 in the 3D-2D pro-
jection solver and significantly reducing the computation
time. The calculation time for one step is 5.993s for pure
3D projection solver and 1.096s for our 3D-2D projection
solver, our algorithm achieves a nearly 6 times speed up.
Fig.14 shows the result of two methods. The two solvers
show consistent results. It is interesting to note that our 3D-
2D projection solver shows better divergence-free property
even though we use fewer associate Legendre polynomials
in the 3D solver. The results show that our method can
ensure the overall divergence-free condition and is effective
in our layer-based discretized model.

5.6 An ablation study about the 2D projection

To validate the effectiveness of our proposed 3D-2D solver,
we implement an ablation study. Whether to use 2D pro-
jection (as described in section 3.4.3) as a control variable,
we performed our proposed 3D-2D projection method and
a pure 3D projection with the same orders of spherical
harmonics on the same terrain, as shown in figure 15.
The experiment result shows that our proposed mixture
3D-2D projection method has better divergence-free veloc-
ity under the same orders of spherical harmonics as the



Fig. 10: Smoke flow through armadillo. We set a smoke
source on Armadillo’s left hand, and with the wind speed,
the smoke is drifting to its right hand. Smoke will pass
through Armadillo’s head and ears along the way and
generate vortices. This example also uses the spherical shell
space as the simulation domain, and the geometry of the
armadillo is superimposed on a base sphere as terrain.

pure 3D projection has. Moreover, our proposed method
can produce better vortices without unevenly distributed
clouds, compared to the result of the pure 3D projection.
This comparison result also validates the effectiveness of
our proposed method. While using lower-order spherical
harmonics expansion to save computational effort, the extra
2D projection can ensure better divergence-free condition
and have better visual effects.

6 CONCLUSION AND FUTURE WORKS

We have presented a layer-based method for simulating
three-dimensional planetary flow in the spherical coordi-
nate. Based on our layer-by-layer structure and a boundary-
aware pressure solving scheme, we are able to recover
horizontal and vertical flow motions under the existence
of arbitrary terrain shapes within a spherical shell of finite
thickness. The proposed method is also flexible for artistic
control and is easy to implement.

Our method has several limitations. Although the
method we implemented is three-dimensional, the main
application scenarios are focused on the three-dimensional
spherical shell structure without the flows at the center of
the sphere, which will be also interesting and is worthy
of future study. Our work mainly focuses on the static
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Fig. 11: In the similar scenario with Fig. 10, simulate in the
Cartesian coordinate.

Fig. 12: A tiny cow geometry is imported as terrain. The
cloud around the cow is initialized by a divergence-free

velocity, due to our geometric-aware 3D solver, the cloud
could flow around the tiny cow and climb along the surface.

obstacles and it’s worth extending it to handle the moving
obstacles in the future. Since the expression accuracy of
spherical harmonic expansion near the pole is relatively
poor compared with that near the equator, there will be a
slight artifact near the pole, which needs to be improved
in the future. Although we do not observe artifacts due
to the re-balance step, it possibly can cause discontinuity
in the simulation. In the advection step, we decomposed it
into horizontal and vertical directions, and a full spherical-
coordinate-based backtracking scheme is worthy of future
exploration. The real-world atmosphere features variable
air density along the altitude direction, but we assume the
density of the fluid is constant in this work. The current
framework does not support simulating phase change and
multi-phase flow which are important for cloud, rain, and
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Fig. 13: Our method proposes convenient uplift and downlift control over the spherical domain. In this example, we set up
and down force controls at several positions on the sphere, and make it form multiple ring structures.

Fig. 14: Comparison with pure 3D Poisson solver proposed
by [35] in projection. The left column is our proposed 3D-2D
projection solver and the right column is a pure 3D projec-
tion solver. Our method is nearly 6 times faster than the
pure 3D solver while effectively ensuring incompressibility.

other common phenomena, they will deserve future inves-
tigations. Currently, the grid number within each layer is
constant, therefore the grid sizes of the upper layers are
bigger than that of the bottom layers. An adaptive grid
solution could be adopted in the future work.

ACKNOWLEDGMENTS

This work is supported by the Natural Science Foundation
of China (62272245), the Open Project Program of the State
Key Lab of CAD&CG (Grant No. A2207), Zhejiang Univer-
sity, and the Fundamental Research Funds for the Central
Universities (Nankai University, No. 63233080). We thank
the anonymous reviewers for providing us with profes-
sional suggestions.

REFERENCES

[1] E. Roeckner, G. Bauml, L. Bonaventura, R. Brokopf, M. Esch,
M. Giorgetta, S. Hagemann, I. Kirchner, L. Kornblueh, E. Manzini
et al., “The atmospheric general circulation model echam 5. part i:
Model description,” 2003.

[2] M. Huber, “modeling approach using the ncar ccsm,” Causes and
consequences of globally warm climates in the Early Paleogene, vol. 369,
p- 25, 2003.

[3] D.J. Hill and R. D. Henderson, “Efficient fluid simulation on the
surface of a sphere,” ACM Transactions on Graphics (TOG), vol. 35,
no. 2, pp- 1-9, 2016.

Fig. 15: An ablation study to validate the effectiveness of
the 2D projection in our proposed 3D-2D projection method.
The left column is the result of our proposed 3D-2D projec-
tion, and the right column is the result of removing the 2D
projection. The bottom row of pictures uses particles to track
the velocity field and is clearer to observe the differences.
The blue boxed area highlights the main difference.

[4] B.Yang, W. Corse, J. Lu, J. Wolper, and C.-F. Jiang, “Real-time fluid
simulation on the surface of a sphere,” Proceedings of the ACM on
Computer Graphics and Interactive Techniques, vol. 2, no. 1, pp. 1-17,
2019.

[5] W. Huang, J. Iseringhausen, T. Kneiphof, Z. Qu, C. Jiang, and
M. B. Hullin, “Chemomechanical simulation of soap film flow on
spherical bubbles,” ACM Transactions on Graphics (TOG), vol. 39,
no. 4, pp. 41-1, 2020.

[6] O. Azencot, S. Weiimann, M. Ovsjanikov, M. Wardetzky, and
M. Ben-Chen, “Functional fluids on surfaces,” in Computer Graph-
ics Forum, vol. 33, no. 5. Wiley Online Library, 2014, pp. 237-246.

[7] S. Elcott, Y. Tong, E. Kanso, P. Schroder, and M. Desbrun, “Sta-
ble, circulation-preserving, simplicial fluids,” ACM Transactions on
Graphics (TOG), vol. 26, no. 1, pp. 4—es, 2007.

[8] L.Shiand Y. Yu, “Inviscid and incompressible fluid simulation on
triangle meshes,” Computer Animation and Virtual Worlds, vol. 15,
no. 3-4, pp. 173-181, 2004.

[9] S. Ishida, P. Synak, F. Narita, T. Hachisuka, and C. Wojtan, “A
model for soap film dynamics with evolving thickness,” ACM
Transactions on Graphics (TOG), vol. 39, no. 4, pp. 31-1, 2020.

[10] T. D. Ringler, R. P. Heikes, and D. A. Randall, “Modeling the
atmospheric general circulation using a spherical geodesic grid: A
new class of dynamical cores,” Monthly Weather Review, vol. 128,
no. 7, pp. 2471-2490, 2000.

[11] A. Oron, S. H. Davis, and S. G. Bankoff, “Long-scale evolution of
thin liquid films,” Reviews of modern physics, vol. 69, no. 3, p. 931,
1997.

[12] Q. Cui, T. Langlois, P. Sen, and T. Kim, “Spiral-spectral fluid
simulation,” ACM Transactions on Graphics (TOG), vol. 40, no. 6,



(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

pp. 1-16, 2021.

U. Vimont, J. Gain, M. Lastic, G. Cordonnier, B. Abiodun, and
M.-P. Cani, “Interactive meso-scale simulation of skyscapes,” in
Computer Graphics Forum, vol. 39, no. 2. Wiley Online Library,
2020, pp. 585-596.

J. Stam, “Stable fluids,” in Proceedings of the 26th annual conference
on Computer graphics and interactive techniques, 1999, pp. 121-128.
M. Miiller, D. Charypar, and M. H. Gross, “Particle-based fluid
simulation for interactive applications.” in Symposium on Computer
animation, vol. 2, 2003.

M. Macklin and M. Miiller, “Position based fluids,” ACM Transac-
tions on Graphics (TOG), vol. 32, no. 4, pp. 1-12, 2013.

J. U. Brackbill and H. M. Ruppel, “Flip: A method for adaptively
zoned, particle-in-cell calculations of fluid flows in two dimen-
sions,” Journal of Computational physics, vol. 65, no. 2, pp. 314-343,
1986.

Y. Zhu and R. Bridson, “Animating sand as a fluid,” ACM Trans-
actions on Graphics (TOG), vol. 24, no. 3, pp. 965-972, 2005.

L. Yaeger, C. Upson, and R. Myers, “Combining physical and vi-
sual simulation—creation of the planet jupiter for the film “2010”,”
Acm Siggraph Computer Graphics, vol. 20, no. 4, pp. 85-93, 1986.

Q. Cui, P. Sen, and T. Kim, “Scalable laplacian eigenfluids,” ACM
Transactions on Graphics (TOG), vol. 37, no. 4, pp. 1-12, 2018.

T. De Witt, C. Lessig, and E. Fiume, “Fluid simulation using
laplacian eigenfunctions,” ACM Transactions on Graphics (TOG),
vol. 31, no. 1, pp. 1-11, 2012.

K. J. Burns, G. M. Vasil, J. S. Oishi, D. Lecoanet, and B. P. Brown,
“Dedalus: A flexible framework for numerical simulations with
spectral methods,” Physical Review Research, vol. 2, no. 2, p. 023068,
2020.

L. Silberman, Planetary waves in the atmosphere. New York Univer-
sity, 1953.

F. Baer and G. W. Platzman, “A procedure for numerical inte-
gration of the spectral vorticity equation,” Journal of Atmospheric
Sciences, vol. 18, no. 3, pp. 393401, 1961.

H. W. Ellsaesser, “Evaluation of spectral versus grid methods
of hemispheric numerical weather prediction,” Journal of Applied
Meteorology and Climatology, vol. 5, no. 3, pp. 246-262, 1966.

A. Robert, “The integration of a spectral model of the atmosphere
by the implicit method,” in Proc. WMO/IUGG Symposium on NWP,
Tokyo, Japan Meteorological Agency, vol. 7, 1969, pp. 19-24.

W. Bourke, “An efficient, one-level, primitive-equation spectral
model,” Monthly Weather Review, vol. 100, no. 9, pp. 683-689, 1972.
B. Hoskins and A. Simmons, “A multi-layer spectral model and
the semi-implicit method,” Quarterly Journal of the Royal Meteoro-
logical Society, vol. 101, no. 429, pp. 637-655, 1975.

N. A. Phillips, “A coordinate system having some special advan-
tages for numerical forecasting,” J. Meteorol., vol. 14, pp. 184-195,
1957.

M. J. Suarez, A. Arakawa, and D. A. Randall, “The parameteriza-
tion of the planetary boundary layer in the ucla general circulation
model: Formulation and results,” Monthly weather review, vol. 111,
no. 11, pp. 2224-2243, 1983.

Y-J. G. Hsu and A. Arakawa, “Numerical modeling of the atmo-
sphere with an isentropic vertical coordinate,” Monthly Weather
Review, vol. 118, no. 10, pp. 1933-1959, 1990.

S. Elcott and P. Schréder, “Building your own dec at home,” in
ACM SIGGRAPH 2005 Courses, 2005, pp. 8-es.

O. Azencot, O. Vantzos, and M. Ben-Chen, “Advection-based func-
tion matching on surfaces,” in Computer Graphics Forum, vol. 35,
no. 5. Wiley Online Library, 2016, pp. 55-64.

C. K. Batchelor and G. Batchelor, An introduction to fluid dynamics.
Cambridge university press, 2000.

T.-S. Lin, W.-FE. Hu, and C. Misbah, “A direct poisson solver in
spherical geometry with an application to diffusiophoretic prob-
lems,” Journal of Computational Physics, vol. 409, p. 109362, 2020.
C. Batty, F. Bertails, and R. Bridson, “A fast variational framework
for accurate solid-fluid coupling,” ACM Transactions on Graphics
(TOG), vol. 26, no. 3, pp. 100-es, 2007.

Y. T. Ng, C. Min, and F. Gibou, “An efficient fluid—solid coupling
algorithm for single-phase flows,” Journal of Computational Physics,
vol. 228, no. 23, pp. 8807-8829, 2009.

M. Abramowitz and I. A. Stegun, Handbook of mathematical func-
tions with formulas, graphs, and mathematical tables. US Government
printing office, 1964, vol. 55.

Y. Zhang, J. Cohen, and J. D. Owens, “Fast tridiagonal solvers on
the gpu,” ACM Sigplan Notices, vol. 45, no. 5, pp. 127-136, 2010.

13

[40] M.-C. Lai and W.-C. Wang, “Fast direct solvers for poisson equa-

tion on 2d polar and spherical geometries,” Numerical Methods for
Partial Differential Equations: An International Journal, vol. 18, no. 1,
pp- 56-68, 2002.

[41] R. Bridson, J. Houriham, and M. Nordenstam, “Curl-noise for

procedural fluid flow,” ACM Transactions on Graphics (ToG), vol. 26,
no. 3, pp. 46—es, 2007.

Ruihong Cen is currently a graduate student in
the College of Computer Science, Nankai Uni-
versity. He received a bachelor’'s degree from
the School of Mechanical & Automotive Engi-
neering, South China University of Technology.
His research interest lies in the physically-based
simulation in computer graphics.

Bo Ren received the PhD degree from Tsinghua
University in 2015. He is currently an associate
professor in the College of Computer Science,
Nankai University, Tianjin. His research interests
include physically-based simulation, 3D scene
reconstruction and analysis.



	Introduction
	Related works
	Methodology
	Equations in 3D Spherical Coordinate
	Layered discretization
	Advection Calculation
	Projection Calculation
	Boundary representation
	Boundary-aware 3D projection
	Boundary-aware 2D projection

	Re-balancing Vertical motions
	The orders of spherical harmonics expansion

	Implementation
	Compute entries of tridiagonal matrix
	Estimate volume ratio not occupied by the terrain of each velocity component
	The thickness of the spherical shell

	Experiment results
	Flow over rough terrain
	Release from a dam
	Flow over complex geometries
	Controlling
	Compared with high-precision 3D projection solver
	An ablation study about the 2D projection

	Conclusion and future works
	References
	Biographies
	Ruihong Cen
	Bo Ren


